В начале 1800-х годов ядовитый смог и недостаток света от уличного освещения превращали Лондон в неприветливый темный город. Тайна, окутывавшая природу электричества, не позволяла оценить его практические свойства. К счастью, в одной скромной семье рос мальчик, который очень скоро почувствует страстный интерес к электрическим и магнитным явлениям.При рождении Майкла Фарадея мир представлял собой довольно темное место. Во-первых, в то время было очень мало источников искусственного света, а во-вторых, планету накрыло облако пепла от извержения далекого вулкана. Ньюингтон-Баттс близ Лондона, где родился Майкл, был одним из самых грязных городков. Его окутывал дым машин, порожденных промышленной революцией, в ходе которой сельскохозяйственные рабочие перебирались в города, где трудились по многу часов подряд и практически не имели шансов на социальное и интеллектуальное развитие. Однако Фарадею удалось разорвать эту цепь и стать примером человека, сделавшего одну из самых блестящих научных карьер XIX века. Часть его успеха можно связать с тем фактом, что Майклу посчастливилось найти работу переплетчика. В ту эпоху чтение книг было очень дорогим способом проведения досуга, однако Фарадей получил доступ ко всем книгам, которые переплетал, и он читал их с той же страстью, с какой ювелир рассматривает драгоценный камень. Другая часть его успеха, наверное, опирается на религиозные убеждения ученого, который был сандеманианцем — членом протестантской общины, которая строго и буквально трактует Священное Писание.
Из огромного количества вулканического материала, выброшенного Тамборой, из лавы, пепла и пемзы сформировались острова. Мельчайшие частицы поднялись выше 15 километров, некоторые попали даже в стратосферу, откуда начали свое медленное и неуклонное движение к самым отдаленным регионам планеты. По воле восточных ветров, господствующих на высоте, пепел Тамборы несколько раз облетел Землю. Насыщенность атмосферы вулканическими осадками была такой, что их обнаружили в снегах Гренландии и на заснеженном плоскогорье Антарктиды. Невероятный факт Всего за несколько месяцев частицы пепла достигли Англии и Испании, из-за чего померкло небо. Для людей, не подозревавших о существовании Тамборы, этот факт казался невероятным: мало кто мог предположить, что извержение далекого вулкана заставит померкнуть Солнце во всем мире. Например, в Испании понижение температуры, связанное с таким затенением, сильно повлияло на сельское хозяйство. Многие культуры не смогли вызреть, урожай был скудным и поздним.
Изобретение паровой машины стало ключевым фактором, запустившим каток промышленной революции. Первая машина на основе парового котла, похожего на те, что использовались для приготовления пищи, была изобретена французским физиком Дени Папеном (1647-1712) и сконструирована английским инженером Томасом Севери (1650-1715). Ее широкое использование началось в 1700-х годах. В 1712 году конструкция была усовершенствована Томасом Ньюкоменом (1663-1729), сотрудничавшим с Севери, и не менялась в течение 50 лет, до изобретения Джеймсом Уаттом более эффективной модели. В 1774 году Уатт при поддержке крупного капитала смог поставить на коммерческую основу производство новых машин, и к 1800 году в Англии их работало около 500.
«Нет — нет — нет — нет — никто — справа — нет философия еще не мертва — нет — О, нет — он знает это — спасибо — это невозможно — Браво. В этих строках, дорогой Эбботт, заключен полный и ясный ответ на первую страницу твоего письма от 28 сентября».Подросток почти не ходил в школу и все время проводил на улице, играя с друзьями в камушки в соседнем переулке от своей лачуги. Позже Фарадей будет сожалеть об этом: «Мое образование было самым обычным и состояло из зачатков чтения, письма и арифметики в самой простой и ничем не примечательной школе». В 13 лет Майкл Фарадей, бедняк, не получивший практически никакого образования, начал работать. Его отец предпочел бы, чтобы сын стал подмастерьем у кузнеца, но промышленная революция меняла общество. Хотел этого отец Фарадея или нет, но будущее было за паровыми машинами. Несмотря на то что у Джеймса была возможность устроить сына работать вместе с собой, Майкл временно поступил разносчиком книг к Джорджу Рибо, хозяину соседнего книжного магазина на Бландфорд-стрит, недалеко от Бейкер-стрит. Работа была очень простой: нужно было бегать по окрестностям, что не составляло труда для мальчика, проводившего на улице с друзьями большую часть времени. Такая работа даже не требовала умения читать. Ho при этом Фарадей умел читать, как и многие в то время: все больше людей тянулись к чтению, уровень грамотности в промышленно развитой Европе сильно возрос, отчасти благодаря механизированным прессам, существенно удешевлявшим процесс книгопечатания. Этот всеобщий интерес к книгам давал работу молодому Фарадею, и сам мальчик не мог не поддаться ему. Результат можно угадать: Майкл посматривал на книги, которые разносил, с растущим любопытством. Это любопытство распространилось и на заднюю комнату лавки, где сшивались страницы книг. Рибо в письме 1813 года так передает жажду Фарадея к изучению нового по книгам:
«После рабочего дня он занимался в основном перерисовкой и копированием сборника Artist’s Repository («Коллекция художников»). номера которого получал еженедельно. […] Еще он часто читал произведение доктора Уоттса «Совершенствование разума», носил его с собой в кармане, когда с утра отправлялся на прогулку, шел смотреть какое-либо произведение искусства или искал какую-то редкость растительного мира или минерал. […] Если у меня была какая-нибудь любопытная книга моих клиентов с картинками, которую нужно было переплести, он копировал их, если они казались ему необыкновенными или занятными».
Прочитав в энциклопедии Британника статью «Электричество», написанную Джеймсом Тайлером, Фарадей почувствовал, что обязан прояснить содержавшееся в ней противоречие. Тайлер, продолжая давно существовавшие теории, утверждал, что все электрические явления — как оптические, так и тепловые — могут быть объяснены вибрациями некой жидкости, флюида. Бенджамин Франклин говорил, что тела в обычном состоянии имеют электрический флюид, а отрицательный или положительный заряд соответствует уменьшению или увеличению этого флюида. Роберт Симмер (1707–1763) заявлял, что существуют два вида электричества, или флюидов, — положительный и отрицательный — и каждое тело имеет определенное количество флюида. Для проверки этих явлений Фарадей, используя старые бутылки и дерево, построил в задней комнате лавке Рибо маленький электрогенератор. Эта машина, принцип действия которой основан на трении, хранится в Королевском обществе в Лондоне как предмет, созданный великим экспериментальным гением эпохи.
В жизни сэра Гемфри Дэви можно провести некоторые параллели с его помощником и протеже Майклом Фарадеем: ученый также происходил из бедной семьи. Дэви родился в Пензасе, в Корнуолле, 17 декабря 1778 года. Его отец был резчиком по дереву, а сам Дэви стал учеником аптекаря. Однако с 1797 года, вдохновившись книгой французского химика Антуана Лавуазье, Дэви принял решение стать химиком. Он был учеником у аптекаря, а по завершении обучения поступил помощником к врачу, который основал учреждение для исследования лечебных свойств газов. Уже в 20 лет Дэви стал заведующим учреждения и ставил эксперименты, опровергающие теорию о теплороде, предложенную самим Лавуазье, который вдохновил юношу к занятиям химией. Согласно данной теории, каждое тело обладает определенным количеством теплорода (вещества, отвечающего за тепловые процессы), и изменение температуры, происходящее при контакте двух тел с разной температурой, связано с передачей теплорода. Дэви показал, что при трении двух кусочков льда между собой они начинают таять, хотя не обладают достаточным для таяния количеством теплорода. После этого опыта он понял, что тепло каким-то образом связано с движением. Член Королевского института Уже став лектором Королевского института, в 1813 году Дэви опубликовал книгу, в которой впервые шла речь о применении химии в сельском хозяйстве. Однако самые заметные достижения сделаны Дэви в области электричества. Например, он создал самую мощную в мире батарейку, состоявшую из 250 металлических пластин. Это гигантское устройство использовалось для выделения калия, натрия, бария, стронция, кальция и магния. В 1811 году ученый серьезно пострадал из-за химического отравления, а через год сильно повредил себе глаза в результате взрыва трихлорида азота. Он был назначен президентом Королевского общества. Умер Дэви в Женеве 29 мая 1829 года, во время одного из путешествий по странам Европы, которые он совершал для обмена знаниями с коллегами-учеными.
«Я очень далек от того, чтобы с неблагодарностью принять этот образец доверия, который Вы мне вручили и который является свидетельством рвения, внимания и способностей. Я вынужден отсутствовать в городе и не вернусь раньше конца января. Буду рад встретиться с Вами после возвращения, когда Вы пожелаете. Мне будет приятно помочь Вам в том, что будет в моих силах».Фарадею был 21 год. Он встретился с Дэви, чтобы стать его учеником, однако ученый вынужден был отказать юноше, так как вакантных мест в институте не было. Майкл находился на грани отчаяния. Он видел перед собой только работу переплетчика, которая теперь казалась ему настоящим наказанием. Ho по воле судьбы помощник Дэви был уволен за драку, и ученый взял Фарадея под свое покровительство. Возможно, он решился принять на работу молодого человека без опыта, потому что и сам имел похожую судьбу: Дэви также в 22 года был принят лектором в Королевский институт его основателем Рум- фордом, несмотря на то что был молодым провинциальным ученым, и сам Румфорд сомневался в его талантах. Дэви предложил Фарадею пост помощника в лаборатории — это была самая нижняя ступень в иерархии должностей Королевского института. Однако Фарадей принял предложение. Для него это была возможность попасть в круг образованных людей, оказаться в настоящей лаборатории, учиться у Дэви, а затем и самому подняться по социальной лестнице.
В природе творения Бога никогда не могут находиться в противоречии с высшими предметами, относящимися к нашей будущей жизни.Майкл Фарадей
Некоторые религиозные секты, такие как методисты или евангелисты, исповедующие дисциплину, упорство и строгость, породили немало талантливых исследователей. К ним относятся создатели паровых машин Ньюкомен (баптист) и Уатт (пресвитерианец), основатель атомной теории и квакер Джон Дальтон (1766–1844). В Великобритании развитие науки и техники происходило также в среде приходских священников, поскольку эти люди получали неплохое жалование за относительно небольшой объем деятельности и располагали большим количеством, свободного времени. Работа на этой церковной должности подразумевала в качестве sine qua non принадлежность к знати или обеспеченному слою населения. В 1851 году в Великобритании насчитывался 17 621 англиканский пастырь. Содержание им выплачивалось не церковью, а составлялось из ренты и десятины. Для того чтобы стать пастырем, необходимо было получить университетское образование. Культурный и обеспеченный класс Таким образом создавался высококультурный и обеспеченный класс. Его представителями были: глава прихода в Лестершире и изобретатель механического ткацкого станка Эдмунд Картрайт (1743–1823); преподобный Уильям Баклэнд (1784–1856) из Оксфорда, который впервые с научной точки зрения открыл динозавров и стал мировым экспертом по копролитам — окаменевшим каловым массам; преподобный Уильям Гринуэлл из Дарема, ставший отцом-основателем современной археологии; преподобный Джон Маккензи-Бэкон из Беркшира, пионер полетов на аэростате; настоятель прихода Кента Томас Байес (1702–1761), доказавший знаменитую теорему Байеса, которая используется для определения статистической вероятности на основании неполных данных.
«Отчетливая амбивалентность его психологической структуры должна была вызывать невыносимое напряжение в его разуме; как результат, мы видим эпизод шизофрении, длившийся три года».Кризис, о котором говорит Эддар, возможно, относится к периоду в начале 1840-х годов, когда Фарадей чувствовал подавленность и упадок сил — об этом мы будем говорить далее. В любом случае, результаты психоанализа Эддара изложены в слишком сжатой форме, чтобы делать какие-либо обоснованные выводы о неизвестных особенностях личности ученого. Был Фарадей до конца честен с самим собой или нет, однако он всегда подчеркивал, что не обнаруживает никакого противоречия между наукой и религией.
После того как старания и немного удачи позволили Фарадею попасть в самое важное научное учреждение страны, гениальность привела его к изучению загадок химии. В то же время его популярность становится примером того, как выходец из социальных низов может подняться до высоты, позволяющей работать бок о бок с учеными, обладающими мировой известностью.Когда Фарадей начал работу в Королевском институте, электричество еще считалось частью химии, прежде всего потому что батарейка, изобретенная итальянским физиком Алессандро Вольтой в 1800 году, позволяла получать электричество химическим способом. Поэтому Фарадей продолжал свои исследования в области физики с использованием методов, характерных в его эпоху для химии. Был и другой фактор, благоприятствующий склонности Фарадея к этой науке: в химии не было математики, которой он не владел, при этом она включала активные опыты с природными явлениями, а Фарадей стал знаменит именно как экспериментатор. Несмотря на поздний возраст для вступления на научную стезю, ученый под руководством Гемфри Дэви сразу же получил известность среди химиков. Позднее, в 1823 году, он провел ряд успешных экспериментов, также лежащих в области химии, по сжижению газов под давлением. Первые химические работы Фарадея появились благодаря его учителю Дэви, которому в 1808 и 1809 годах удалось выделить натрий и калий с помощью самой большой в мире батарейки, созданной самим Дэви. Через год он использовал батарейку для выделения других элементов: стронция, бора, кальция и магния; в 1810-м — хлора; в 1812-м — йода; в 1826-м — брома. Этот успех был таким эффектным, что Наполеон, несмотря на то что Франция находилась в состоянии войны с Англией, наградил Дэви престижной премией Бонапарта Французской академии наук. Фарадей самостоятельно открыл в 1825 году бензол, который позже будет играть решающую роль в работах о молекулярной структуре Августа Кекуле (1829–1896).
«На дымящейся лаве были расстелены скатерти, и неожиданно откуда-то появились хлеб, цыплята, тарелки, сыр, вино, вода и яйца, сваренные на горе, так был приготовлен импровизированный обед в том самом месте. […] После еды были подняты тосты за старую Англию и пропеты «Боже, храни королеву!» и «Правь, Британия, морями». Затем один господин, выходец из России, спел две песни своей страны, очень приятные, со странной и трогательной мелодией».Путешествие длилось полтора года, за это время Фарадей немного научился говорить на французском и итальянском.
Итальянский физик Алессандро Вольта (1745–1827) 20 марта 1800 года сообщил в Королевское общество об изобретении электрической батарейки, представлявшей собой соединение медных и цинковых пластин, проложенных тканью, смоченной в слабом растворе кислоты. Первоначально Вольта назвал свое изобретение электрический искусственный орган, основываясь на экспериментах Гальвани над мертвыми лягушками, мускулы которых подергивались при пропускании постоянного тока. Вольта доказал, что если поместить два металла в кислый раствор, возникает электрический ток. В элементе Вольта происходила электрохимическая реакция, во время которой медь отдавала электроны в раствор, а цинк забирал их. Одновременно цинк растворялся, и на поверхности меди появлялся водород.
Электродвижущая сила Такая батарейка могла производить электродвижущую силу (ЭДС) порядка одного вольта на каждое соединение дисков. Хотя электродвижущая сила на самом деле представляет собой другую силу, исторически сохранилось именно такое наименование для обозначения электрической энергии, производимой батарейкой в замкнутый контур от каждой единицы электрического заряда, перемещаемого вдоль всего контура. В честь Алессандро Вольта единица электродвижущей силы в международной системе единиц СИ называется с 1881 года вольт.
Во время своего путешествия на континент Дэви сделал открытие, которое пошатнуло одно практически всеобщее мнение, господствовавшее среди химиков. В Париже Ампер и КлеманДезорм показали Дэви вещество, изготовленное из одного вида морских водорослей, открытого всего два года назад Бернаром Куртуа (1777–1838). При нагревании новое вещество испускало фиолетовый дымок, который затем конденсировался в виде темных кристаллов. Вещество было похоже на хлор. Тогда существовало мнение, что все кислоты содержат кислород, поэтому, если хлор составлял кислоту в комбинации с водородом (хлоргидридная кислота), считалось, что это должен быть какой-то оксид.
Два новых элемента Дэви отвергал теорию о том, что все кислоты содержат кислород, и доказал: хлор и новое вещество — разные элементы. Сразу же из Парижа он отправил письмо в Королевское общество с описанием нового вещества и предложил для него название йод — от греческого слова, обозначающего фиолетовый цвет. Сейчас мы знаем, что йод — элемент с атомным номером 53, являющийся важным компонентом нашего рациона: недостаточное его количество может привести к различным заболеваниям. Английский философ Бертран Рассел (1872–1970) использовал эти медицинские данные о йоде для опровержения существования бессмертной души: «Явно химического происхождения используемая для мышления энергия. К примеру, недостаток йода в организме превращает разумного человека в идиота. Феномены сознания, вероятно, связаны с материальной структурой».
В 1826 году Майкл Фарадей посоветовал своему коллеге, химику и фармацевту Джону Уолкеру (1781–1859), зарегистрировать патент на, как ему казалось, важное изобретение — спички, зажигающиеся от трения. Считается, что открытие было случайным.
Уолкер взял хлорат калия, сульфид сурьмы, камедь и крахмал и перемешал их деревянной палочкой. Смесь засохла на конце палочки, а когда Уолкер решил очистить ее и потер палочкой о пол, вспыхнуло пламя. Уолкер не считал, что его изобретение достойно патента, он воспринимал его скорее как естественную химическую реакцию. Однако на следующий год некто Сэмюэль Джонс, присутствовавший на демонстрации опытов Уолкера, зарегистрировал патент на спички, которые скоро появились в продаже под названием «Люцифер». Возможно, название «Люцифер» звучало лучше, чем «спички, зажигающиеся от трения», или потому что ими было очень удобно зажигать сигары, однако продажи табака вместе со спичками сильно возросли. Проблема состояла в том, что запах от химической реакции спичек «Люцифер» был очень сильным, они горели с большим количеством искр, а пламя было нестойким, так что использование этих спичек было более вредным для здоровья, чем курение табака.
Фарадей — мое величайшее открытие.Гемфри Дэви
Основное отличие газа от твердых или жидких веществ состоит в том, что его молекулы находятся далеко друг от друга и перемещаются во всех направлениях. Ян Баптист ванн Гельмут ввел термин газ на основе греческого слова хаос («беспорядок»). Постепенно ученые пришли к выводу, что поведение газов можно изучить на основании отношений между их температурой, давлением и объемом. С XVII века начали устанавливаться первые газовые законы. — Закон Бойля — Мариотта, сформулированный Робертом Бойлем и Эдмом Мариоттом в XVIII веке, утверждает, что для определенного количества газа при постоянной температуре объем газа обратно пропорционален давлению данного газа. — Закон Шарля — Гей-Люссака, сформулированный французским химиком Жозефом Луи Гей-Люссаком в 1802 году, утверждает, что для определенного количества газа при постоянном давлении объем газа прямо пропорционален температуре данного газа и для определенного количества газа при постоянном объеме давление газа прямо пропорционально его температуре. — Закон Авогадро, сформулированный Амедео Авогадро в 1811 году, утверждает, что при одинаковых условиях давления и температуры одинаковые объемы разных газов содержат одинаковое количество молекул. — Закон Грэма, сформулированный Томасом Грэмом в 1829 году, утверждает, что движение молекул двух или более газов дает в результате смешение молекул, в закрытой емкости такое смешение быстро образует гомогенную массу. Однако этот процесс меняется при наличии возможности для газа выйти из емкости через маленькие отверстия, или поры (так называемая эффузия газа). Скорость эффузии газов обратно пропорциональна квадратному корню плотности газа.
Истина все же скорее возникает из ошибки, чем из спутанности.Афоризм Фрэнсиса Бэкона, который больше всего ценил Фарадей
Интеллектуал, всегда носящий с собой блокнот для записи мыслей и открытий, является традиционным образом, возникшим много веков назад. Эразм Роттердамский (1466–1536), например, обычно делал записи в книгах, которые читал, усваивая их идеи, а также удерживая в памяти информацию, которую удалось почерпнуть. Он предлагал студентам и профессорам носить с собой блокнот, организованный по темам. Это же советовал и Сенека: «Мы должны подражать пчелам: вычитанное из разных книг разделять, потому что порознь все сохраняется лучше». В эпоху Возрождения студенты, как правило, носили при себе тетрадь, называемую книга общих мест, или просто общие места, в которую записывали все, что было достойно запоминания. Фрэнсис Бэкон замечал, что «с трудом можно найти что-либо более полезное […], чем хорошее и мудрое обобщение записей из общих мест». По словам преподавателя лингвистики Американского университета Наоми Барон, в XVIII веке книга общих мест была «средством выражения, хроникой интеллектуального развития». Тетради для записи всегда вел и Чарльз Дарвин, благодаря чему мы можем шаг за шагом проследить, как он пришел к теории об эволюции видов. Джон Локк начал вести такие тетради в 1652 году, на первом курсе Оксфорда.
«Фарадей, напротив, показывает нам как свои неудавшиеся эксперименты, так и успешные, свои смутные догадки и хорошо разработанные идеи, поэтому читатель вне зависимости от уровня своих мыслительных способностей чувствует интерес, восхищение и думает, что при возможности тоже мог бы быть великим открывателем. Таким образом, каждый студент обязан прочесть работы Ампера, представляющие безукоризненный пример научного стиля при обосновании открытия, но также нужно изучать Фарадея, чтобы культивировать свой научный дух с помощью рассмотрения воздействия и реакции между новыми фактами, раскрытыми и представленными Фарадеем, и процессом рождения идей в его голове».
Взявшись за вопросы электричества и магнетизма, Фарадей приблизил наступление великой экспериментальной революции. Его открытия, совершенные с использованием собственного метода, подсказанного твердой верой, привели к важным социальным изменениям: благодаря огромной силе, скрывавшейся в электромагнитных явлениях, не только возрос уровень жизни сограждан ученого, но и встал вопрос полного переоборудования производств, созданных в годы промышленной революции.Как уже говорилось, в начале XIX века электричество больше связывалось с химией, чем с физикой, поэтому исследования Фарадея в области химии привели его к экспериментам с электричеством. В действительности ученый первым начал отделять электричество от химии, подчеркивая его фундаментальную связь с физикой. Термин электричество происходит от древнегреческого слова «янтарь» — elektron. Этот материал, потертый о шерсть, притягивает волокна соломы. В 1600 году Уильям Гильберт (1544–1603) выяснил, что этим странным свойством обладает не только янтарь, но также стекло, сера, соль и другие материалы, которые мы называем диэлектриками. Век спустя Стивен Грей (1666–1736) провел эксперименты, доказавшие, что электричество переходит с одних тел на другие, если они соединены металлом. В 1773 году Шарль Дюфе (1698–1739) открыл два вида электростатического взаимодействия — смоляное и стеклянное. Разные виды взаимно притягиваются, одинаковые — отталкиваются. Позднее Бенджамин Франклин сделал вывод о том, что каждое тело обладает определенным количеством электрического флюида: при трении одного тела о другое нарушается равновесие, у одного из тел возникает нехватка флюида (-) (эквивалентно смоляному электричеству), а у другого — избыток (+) (эквивалентно стеклянному электричеству). К 1760-м годам Даниил Бернулли, Пристли и Кавендиш пришли к выводу о том, что электростатическое взаимодействие изменяется обратно пропорционально квадрату расстояния, как и в случае с гравитационным взаимодействием. В 1785 году Шарль Кулон измерил данную зависимость, представив ее в виде закона, который сейчас носит его имя. И все же, несмотря на некоторые достижения, электричество оставалось абсолютной загадкой. По словам нобелевского лауреата по физике Леона Ледермана (р. 1922), в эпоху, когда жил Фарадей, электричество вызывало столько же вопросов, сколько сегодня вызывают кварки — мельчайшие неуловимые частицы, входящие в состав протонов и нейтронов. Ни одна из имевшихся тогда обоснованных научных формул не могла объяснить явление, при котором ток проходит по медной проволоке и притягивает металлические опилки, несмотря на то что между ними только пустое пространство. Уже в 1812 году Фарадей, проявляя склонность к экспериментаторству, заинтересовался этой загадкой и изготовил гальваническую батарею из семи монеток по одному пенни, семи цинковых дисков и шести листов бумаги, смоченных в растворе соляной кислоты. К сожалению, юношу отвлекли от собственных исследований задания, полученные от Дэви, так что Фарадей вернулся к собственной линии экспериментов спустя многие годы — после смерти Дэви в 1829 году. Ученый приступил к работе по данной теме, что привело к революции в существующих взглядах на электричество и магнетизм. После открытия в 1821 году датским химиком Хансом Кристианом Эрстедом магнитного поля, образуемого электрическим током, Фарадей еще раз обратился к практике и создал серию аппаратов для получения, как он это называл, электромагнитного вращения. Так впервые появились электрический двигатель и динамо-машина. В 1831 году благодаря экспериментам, поставленным совместно с изобретателем и членом Королевского общества Чарльзом Уитстоуном (1802–1875), Фарадей начал изучать явление электромагнитной индукции и открыл, что при движении магнита в катушке индуцируется электрический ток. Это позволило математически описать закон, согласно которому магнит может производить электричество. Однако работу Фарадея нарушило неожиданное препятствие — любовь. Это была 23-летняя дочь одного из членов общины сандеманиацнев, Сара Барнард (1800–1879). Она сразу же привлекла внимание ученого, но поставленные им цели в науке были так высоки, что он считал любую другую деятельность, в том числе любовь, лишь отвлекающим от работы фактором. Фарадей даже написал стихотворение, в котором обвинял любовь в том, что она отвлекает мужчин от важных дел. По иронии судьбы, именно это стихотворение стало причиной сближения Майкла и Сары: девушка очень обиделась на текст, и Фарадею пришлось объясниться с ней, чтобы восстановить хорошие отношения. В результате 12 июня 1821 года Майкл Фарадей, сын кузнеца-сандеманианца, заключил брак с Сарой Барнард, дочерью серебрянщика и сандеманианского пастора. Одержимый научной работой, он попросил у жены разрешения вместо свадебного путешествия посвятить время, которое они должны были провести вместе, написанию статьи по истории электричества и магнетизма. Его жена, терпеливая и хозяйственная, как все женщины в общине сандеманианцев, не возражала против этой необычной просьбы. Тогда Фарадей принялся читать все книги из библиотеки Королевского института об электричестве и магнетизме, воспроизводя описанные в них эксперименты. К концу августа 1821 года он провел уже более сотни опытов, но один никак не выходил из его головы, даже когда статья была уже сдана в Annals of Philosophy. Это был эксперимент Ханса Кристиана Эрстеда, проведенный в 1819 году и ставший первым в истории опытом по электромагнетизму.
Ханс Кристиан Эрстед родился в Дании в 1777 году, изучал физику в Копенгагенском университете, ему принадлежит первое эмпирическое доказательство взаимосвязи магнетизма и электричества. Об этом открытии стало известно в 1820 году, что ознаменовало собой новую научно-техническую революцию, подобную той, которую вызвало изобретение паровой машины. Первые опыты были проведены Эрстедом в 1819 году во время практического объяснения на занятии: он приближал намагниченную стрелку к проволоке, по которой проходил электрический ток. Стрелка разворачивалась перпендикулярно проволоке. При изменении направления тока стрелка поворачивалась на 180°, сохраняя перпендикулярность по отношению к проволоке.
«Хотя я и сожалел, что теряю свои исследования, но я слишком многим был обязан ему за его любезность со мной в прошлом, для того чтобы говорить, что это было моим, в то время как он говорил, что это было его».Несмотря на все препятствия, карьера Фарадея продолжала развиваться, и он поднялся до вершин, о которых не мог и мечтать: через два месяца он стал кандидатом в члены Королевского общества, старейшего научного общества Соединенного Королевства и одного из старейших в Европе. И снова Дэви поддался чувству ревности к своему ученику и не только не поддержал его кандидатуру, но начал активную кампанию против Фарадея, вытащив старую историю о «плагиате» у Волластона. Для того чтобы очистить свое имя от подозрений, Фарадей опубликовал статью с описанием всех событий, связанных с открытием электродвигателя, и снова получил поддержку Волластона. После этого Дэви прекратил свои нападки. В итоге 8 июля 1824 года Майкл Фарадей практически единогласно был избран членом Королевского общества. Единственный голос против, несмотря на секретность выборов, небезосновательно приписывают Дэви. В 1825 году Фарадей стал директором Королевского института. Но эти повышения никак не способствовали его работе в области электромагнетизма. Отсутствие новых открытий было связано с нехваткой времени: Дэви решил нагрузить Фарадея рутинной работой, чтобы тот не имел возможности проявить свои прекрасные способности. Например, он попросил Фарадея заняться совершенствованием качества стекла для телескопов и других оптических инструментов. Вместе с астрономом Джоном Гершелем (1792–1871) из Кембриджа и создателем оптических приборов Джорджем Долландом (1774–1852) Фарадей изучал образцы стекла, которые должны были быть отшлифованы в форме линзы.
Книга природы написана перстом Бога.Майкл Фарадей
Джозеф Генри родился в 1797 году в Олбани в очень бедной семье. В 13 лет он начал работать учеником часовщика. Знание часовых механизмов помогло ему впоследствии создавать собственные инструменты. Так же как и Фарадей, он был самоучкой. В 1826 году Генри получил место преподавателя математики и натурфилософии; одновременно он, как и Фарадей, занимался экспериментами по электромагнитной индукции. В 1832 году Принстонский университет предложил ему место профессора, несмотря на отсутствие у Генри официальных академических званий. Но репутация шла впереди исследователя: уже в 1830 году он создал самый мощный электромагнит той эпохи, с помощью которого можно было поднимать грузы до 1000 кг. До этих пор мало кто мог поверить, что магнетизм способен на такую мощь. Как правило, у электромагнитов есть стержень из мягкого железа, которое намагничивается при пропускании тока через обмотку ядра; при остановке тока магнитное поле исчезает. Электромагнит Генри, который он использовал на занятиях, имел форму подковы с многослойной обмоткой и был достаточно небольших размеров, примерно 12 дюймов в высоту. Открытие самоиндукции Хотя Фарадей и Генри ставили свои опыты в одно время, Фарадей первым опубликовал результаты. В любом случае, за Генри признается открытие самоиндукции: он подключал к батарее смотанный в катушку провод, при этом наблюдалась искра; при отключении искра была более сильной. Генри сделал вывод, что провод был заряжен и при отключении реагировал сам на себя. Дело в том, что при прохождении тока по контуру вокруг образуется магнитное поле, но если ток изменяется, измененное магнитное поле дает временное изменение магнитного потока на контур. Генри понял это, потому что при подключении и отключении контура интенсивность тока в короткие интервалы времени резко менялась. Благодаря этому открытию в честь Генри Джозефа коэффициент самоиндукции измеряется в генри. Также ученый помогал Сэмюэлю Морзе и Грэхему Беллу в их разработках телеграфа и телефона соответственно.
«23 сентября 1831 Дорогой Филлипс, […] я сильно занят, снова работаю над электромагнетизмом, думаю, что у меня получилось нечто замечательное, но не могу еще утверждать это. Очень может быть, что после всех моих трудов я в конце концов вытащу водоросли вместо рыбы [...]»Благодаря систематическим экспериментам Фарадей рассмотрел все виды индукции. Он доказал, что существует несколько способов индуцировать ток на провод: подключая и отключая ток на соседнем кабеле; приближая и удаляя проволоку, по которой проходит стационарный ток; приближая и удаляя магнит и кабель; вращая магнит рядом с кабелем или кабель рядом с магнитом и так далее (см. схему). Если магнит вводить в витки свернутого кабеля и вынимать из них, эффект тем сильнее, чем более мощный магнит, чем больше зона, ограниченная кабелем, чем быстрее вводится и вынимается магнит. В случае если ток индуцируется с одного кабеля на другой, эффект усиливается при более сильном индуцирующем токе и при большей скорости его изменения. Все явления электромагнитной индукции резюмированы Фарадеем в простом законе, связывающем индукционный ток с силовыми магнитными линиями вокруг кабеля. Закон Фарадея гласит, что величина индуцированной на кабель электродвижущей силы, или способности заряда к движению, тем больше, чем больше изменение магнитного потока, проходящего через контур, то есть количество линий поля, проходящих через кабель. Иными словами, создание электрического тока — динамический процесс, требующий изменения интенсивности тока или положения магнита. Шел октябрь 1831 года, то есть прошло всего несколько месяцев, как Фарадей решил направить все свои силы на понимание электромагнетизма.
Одна из формулировок закона Фарадея звучит так: «Для любого замкнутого контура индуцированная электродвижущая сила равна скорости изменения магнитного потока, проходящего через этот контур, взятого со знаком минус:
где ε — индуцированная ЭДС, Φ — магнитный поток, t — время, d/dt — производная по отношению к времени». Знак «-»был добавлен Генрихом Ленцем, так как направления ЭДС и тока стремятся к противоположности по отношению к получаемому изменению. Из-за этого в некоторых текстах закон Фарадея носит более сложное название — закон Ленца — Фарадея или даже Ленца — Фарадея — Генри.
Если мы приблизим друг к другу два магнита противоположными полюсами, они будут притягиваться, если одинаковыми полюсами — отталкиваться. Фарадей объяснял данное явление тем, что от полюсов магнитов отходят линии: он называл их силовыми, а сегодня их называют линиями магнитного поля. Эти линии начинаются у одного полюса и заканчиваются на противоположном полюсе одного и того же или ближайшего магнита. На всей протяженности этих линий, которые Фарадей представлял невидимыми канатами в пространстве, окружающем магнит, присутствует сила натяжения, которая и отвечает за притягивание одного магнита к другому. Это пространство Фарадей назвал магнитным полем. Таким образом, явление, когда магнит воздействует на расстоянии на металлический объект, можно интерпретировать следующим образом: магнит создает вокруг себя силовые поля, которые мы называем магнитным полем. Легко увидеть Термин «поле» был введен Фарадеем, он хотел поместить между полюсами магнита человека, но независимо от его присутствия или отсутствия свойства поля сохранялись. Хотя еще в XVII веке философ-иезуит Никколо Kaбео писал о силовых линиях, современное понятие также относится к Фарадею и его термину «поле». Чтобы увидеть эти линии, можно рассыпать вокруг магнита железные опилки: они займут место в соответствии с магнитным полем, делая видимым расположение его линий.
Идея о том, как изображать воздействие магнита или электрического тока в окружающем их пространстве с помощью силовых линий, принадлежит Фарадею. С помощью таких изображений, по всей видимости связанных с религиозными представлениями ученого. Фарадей компенсировал свою слабую математическую подготовку. Если мы будем с помощью железных опилок рассматривать магнитное поле, созданное прямым магнитом, то увидим, что на полюсах силовые линии расположены ближе друг к другу, а при удалении от полюсов линии разделяются.
Принимая во внимание, что интенсивность магнитного поля В уменьшается по мере удаленности от полюсов, можно установить соотношение между этими двумя фактами, подтвердив, что интенсивность поля В прямо пропорциональна количеству силовых линий, проходящих по поверхности. Чем ближе друг к другу расположены линии, тем более интенсивным будет поле в данной зоне. Количество силовых линий поля В, проходящих по поверхности, зависит от того, как ориентирована эта поверхность по отношению к направлению линий. Таким образом, для определенной совокупности силовых линий количество точек пересечения с поверхностью будет максимальным при перпендикулярной ориентации (рисунок I) и нулевым — при параллельной ориентации (рисунок 2). Количество силовых линий поля В, перпендикулярно пересекающих поверхность, выражает величину интенсивности данного поля. Так, величине, названной магнитный потоп и обозначаемой буквой Ф, мы можем дать следующее определение: если у нас есть некая плоская поверхность S и перпендикулярное ей магнитное поле В с одинаковой величиной во всех точках, потоком магнитного поля этой поверхности мы назовем выражение Φ = B∙S. Необходимо помнить, что магнитный поток связан с количеством силовых линий (или полем), которые пересекают поверхность. Изменение потока с помощью контура индуцирует электрический ток на данный контур. Когда это изменение происходите некоторой периодичностью, индуцируемый ток также периодически меняет направление.
Эксперименты Фарадея по электромагнитной индукции показывают, что в проводнике при перемещении и пересечении силовых линий магнитного поля будет возникать индуцированная электродвижущая сила, если речь идет о замкнутом контуре, то есть возникнет индуцированный ток. Закон Ленца гласит, что электродвижущая сила, или индукционный ток, всегда имеет направление, противоположное направлению магнитного потока, возбуждающего этот ток. Генрих Ленц (1804–1865), немецкий физик, занимавшийся исследованиями электромагнетизма в России одновременно с Фарадеем и Генри, предложил такое объяснение направлению движения индукционного тока: оно является физическим следствием принципа сохранения энергии, согласно которому энергия не исчезает, а превращается в другие виды энергии, например если автомобиль тормозит, кинетическая энергия переходит в тепло. Индукционный ток В электромагнитной индукции индукционный ток представляет собой работу, направленную в противоположном направлении по отношению к магнитным силам, возникающим между спиралью и магнитом, дающим необходимую энергию для поддержания индукционного тока. Таким образом, мы видим, что когда мы приближаем к индукционной катушке, скажем, северный полюс магнита, то на ближайшем к нему конце катушки возникает также северный полюс. Силы взаимодействия отталкивают магнит от катушки, это взаимодействие необходимо преодолеть для того, чтобы поддержать явление индукции. Напротив, когда мы удаляем от катушки северный полюс магнита, то на ближайшем ее конце возникает южный полюс. Таким образом, индукционный ток будет возникать только при поддержании относительного движения катушки и магнита.
Темный магнит представляет собой магнит-индуктор (реальный), белый магнит — магнит, на который индуцируется ток (воображаемый). Схема позволяет нам убедиться в том, что закон Ленца основан на принципе сохранения энергии. Что случилось бы в первом случае, например если направление индукционного тока было бы противоположным? Катушка начала бы действовать как магнит, ее южный полюс был бы направлен на северный полюс магнита-индуктора. Это вызвало бы ускорение магнита-индуктора в сторону катушки и увеличение изменения потока на единицу времени, а следовательно, рост индукционного тока, который увеличил бы силу, действующую на магнит. Таким образом, кинетическая энергия магнита и тепло, полученное вследствие эффекта Джоуля, на катушке увеличились бы без присутствия источника энергии.
Широкомасштабное использование и производство электричества на основании открытий Фарадея, повлекшие за собой социальные преобразования, не были быстрыми. Известна следующая история о министре финансов Гладстоне, который спросил Фарадея, для чего может быть нужно электричество. Ученый ответил: «Однажды, сэр, вы обложите его налогом». И действительно, в 1880 году был введен первый налог на производство электричества в Англии. Существует еще одна аналогичная история. Во время публичной лекции Фарадея одна женщина спросила, какая польза может быть от того, что он только что объяснял. Фарадей ответил: «А какая польза может быть от новорожденного?» Открытия Фарадея в области магнетизма и электричества стали двигателем социальных изменений и великих преобразований, как сказал Альберт Эйнштейн о возникновении понятия поле для развития физики.
Вселенная управляется четырьмя фундаментальными взаимодействиями: электромагнитным, гравитационным, слабым ядерным и сильным ядерным. Другими словами, известны только четыре способа, которые могут заставить одну часть материи взаимодействовать с другой. Эти четыре силы различаются по своей интенсивности, области применения, они управляются разными механизмами, различны и результаты их действия. Одна из самых слабых сил — гравитационная, ее можно обнаружить на достаточно крупных объектах, таких как мяч или планета. Интенсивность электромагнитной силы в 1038 раз больше, чем гравитационной. Сильная ядерная сила в 100 раз интенсивнее электромагнитной, она соединяет протоны и нейтроны атомного ядра, противодействуя электромагнитной силе, которая стремится отделить протоны, имеющие тот же заряд. При этом сильное ядерное взаимодействие обнаруживается на чрезвычайно малых расстояниях (например, расстояния между частицами в ядре) по сравнению с гравитацией или электромагнитной силой. То же происходит со слабым ядерным взаимодействием.
«Когда магнит воздействует на магнит, расположенный на некотором расстоянии, или на кусок железа, индукционная причина (которую я сейчас назову магнетизмом) постепенно переходит с намагниченных тел, при этом сам переход занимает определенное время […]. Я склонен утверждать, что распространение магнитных сил от магнитного полюса можно сравнить с колебаниями, производимыми небольшим возмущением на поверхности воды, или колебаниями в воздухе от акустических явлений. То есть я предполагаю, что теория колебаний будет применима к этим явлениям, как она применима к звуку. Вероятно также, что она применима и к свету».Научные опасения Фарадея имели причину. Шел только 1832 год, а ученый уже предполагал, что магнитным силам требуется время для перемещения в пространстве, что противоречило ньютоновой концепции мгновенного действия на расстоянии. Также Фарадей говорил о волновом движении и даже обнаружил некоторую поверхностную связь электромагнетизма со светом. Наконец, применив физические аналогии, восполнившие пробелы в его математических знаниях, 19 января 1844 года, в возрасте 52 лет Фарадей представил свои теории на суд публики. Возможно, одной из причин, подтолкнувших его к такому решению, стал нервный кризис, который ученый пережил в 1830-х годах. Он был связан с переутомлением от постоянной интеллектуальной работы, которой Фарадей изнурял свой организм: он осознал, что может умереть в любой момент, и единственным его наследием станет запечатанная записка, хранящаяся в архиве Королевского общества. Темой его выступления, сделанного в Королевском институте в рамках Вечерних лекций по пятницам, стала природа атомов. Атомы он представлял в виде сгустков на силовых линиях, составляющих силовую подструктуру: силовые магнитные, электрические и даже гравитационные линии распространяются в пространстве и соединяют между собой все тела во Вселенной. Несмотря на то что данные аналогии достаточно четко отражают современное описание мира с позиции теоретической физики, в 1844 году это звучало очень странно и поэтому не впечатлило аудиторию. Фарадей усовершенствовал первый электромагнитный генератор, повторил свой эксперимент и сформулировал открытие одной фразой: «При увеличении или уменьшении магнитной силы всегда возникает электричество; чем выше скорость увеличения или уменьшения, тем большее количество электричества образуется». Это было очень красноречиво, однако научное сообщество отвергло это открытие, поскольку оно было выражено словами. С тех пор как Ньютон в XVII веке ввел в науку формулы, считалось, что такого рода заявления должны выражаться на однозначном и универсальном языке математики. Фарадей плохо знал математику, гораздо важнее для него были результаты экспериментов, которые обеспечили ему блестящую карьеру в Королевском институте. Фарадей решил, что коллеги не воспринимают его идеи из-за снобизма, считая его всего лишь бедным выходцем из села без академического образования. Фарадей упорно защищал свою позицию, согласовывающуюся с его поэтическим и религиозным миропониманием, и говорил о том, что наука должна выражаться на языке, понятном для обычных людей.
Когда Фарадей изобрел первый электромагнитный генератор, он открыл, что на концах проводника, двигающегося в магнитном поле, возникает разность потенциалов. Это можно сформулировать так: если в двух точках имеется разность потенциалов, и они соединяются проводником, возникает поток электронов (электрический ток). Часть заряда, который получается в точке большего потенциала, будет двигаться по проводнику к точке меньшего потенциала. Ток прекратится, когда электрический потенциал в двух точках уравняется.
«По мере изучения Фарадея я осознал, что его подход к пониманию явления тоже является математическим, хотя и не представлен в общепринятой форме через математические символы. Я нашел также, что его методы могут быть выражены в обычных математических формах и, таким образом, сопоставлены с методами признанных математиков. Так, например, Фарадей своим мысленным взором видел пронизывающие все пространство силовые линии там, где математики видели лишь центры сил, притягивающие на расстоянии. Фарадей видел среду там, где они не видели ничего, кроме расстояния. Фарадей усматривал местонахождение явлений в тех реальных процессах, которые происходят в среде»[2].
«Идея о том, чтобы тело могло воздействовать на другое через пустоту на расстоянии, без участия чего-то такого, что переносило бы действие и силу от одного тела к другому, представляется мне столь нелепой, что нет, как я полагаю, человека, способного мыслить философски, кому она пришла бы в голову».Бентли написал Ньютону ответ, в котором заинтересовался этой идеей, но Ньютон не захотел более подробно обсуждать ее, указывая, что это всего лишь его старческие измышления. Фарадей осознал, что такой гений, как Ньютон, предлагает теории, подобные его собственной, и почувствовал, что должен идти дальше, несмотря на недоверие коллег. Он был уверен, что однажды кто-нибудь найдет практическое применение для его догадок, и почти в 70 лет стал свидетелем этого. Кроме первых электрогенераторов и начала Эры электричества, которые смог увидеть Фарадей, он также участвовал в первых революционных преобразованиях сферы телекоммуникаций. Он писал своему молодому другу, шотландскому физику Джеймсу Клерку Максвеллу, 13 ноября 1857 года:
«На дне моря должна была совершиться гигантская инженерная авантюра. Она должна принести новые доказательства правильности моих теорий о полях с невидимыми силами».
Прямым результатом открытия электромагнита Эрстедом, Ампером и Араго стал телеграф, позволивший людям быстро получать и отправлять сообщения. Патент на изобретение получил американский художник Сэмюэль Финли Морзе в 1832 году. Когда отправитель нажимал клавишу, он подключал электрический ток, перемещающийся по кабелю до получателя, у которого запускался маленький электромагнит. Электромагнит при пропускании через него тока с щелчком притягивал к себе железный язычок. Если отправитель отпускал клавишу, электрический ток прерывался, язычок возвращался в обычное положение. Морзе разработал код на основе прерывистых щелчков язычка, так что стало возможным передать любую букву алфавита со скоростью 150 знаков в минуту при условии прохождения работником телеграфа специального обучения. Эрстед, Ампер и Aparo умерли раньше и не увидели работающего телеграфа, а Майкл Фарадей, хотя уже был болен, смог присутствовать при рождении телекоммуникаций.
Немецко-американский физик Вальтер Мориц Эльзассер (19041991) в 1939 году высказал предположение о том, что вращение Земли создает в ядре из расплавленного металла медленные вихри, текущие с запада на восток. Эти вихри вызывают электрический ток, также проходящий с запада на восток. То есть электрический ток, циркулирующий в ядре Земли, создает магнитные линии по такому же принципу, как катушка проводника Фарадея. Внутренний магнит Сегодня нам известно, что у Земли есть внутренний магнит, отвечающей за магнитное поле планеты. Линии этого поля выходят из Южного полушария и входят в Северное. Причину магнетизма нужно искать в ядре Земли, разделяющемся на внутреннее твердое ядро из никеля и железа и внешнюю оболочку из тех же металлов, но в жидком состоянии. Движение жидкого металла создает магнитное поле благодаря так называемому динамо-эффекту. Оно представляет собой более сложный процесс, чем считалось раньше. Он связан не только с направлением вращения планеты, но и, как считается, стал причиной того, что в прошлом Земля сменила полярность своего магнита. Возможно, смена полюсов связана со скоростью вращения планеты или с тем, что линии поля пересекаются и перепутываются из-за перемещений жидкого металла во внешней оболочке ядра.
Многие исследователи электричества и магнетизма вписаны в историю культурного наследия, их фамилиями названы различные единицы измерения величин, связанных с электричеством, хотя, например, один из основных ученых в данной области, Бенджамин Франклин, этой чести не удостоился. Именем Шарля Огюстена Кулона названа величина заряда, Георга Ома — единица измерения сопротивления, Джеймса Уатта — единица измерения мощности, Джеймса Джоуля — энергия, Алессандро Вольты — единица измерения электрического потенциала, разности потенциалов и электродвижущей силы, Андре Ампера — сила тока. Почему выбрали фамилию Вольты, а не Фарадея? Англичанин, не публикующийся на французском Уильям Томсон был убежден, что производство электричества в будущем станет одной из самых важных отраслей промышленности, а значит, необходимо. чтобы люди могли точно знать, какое количество побуждающей силы от невидимого поля они покупают. Вероятно, он хотел дать этой единице измерения имя Фарадея, которым восхищался, но вмешались французские чиновники, в руках которых в течение всего XIX века находилась научная номенклатура. Основной проблемой Фарадея стала его национальность: он был англичанином, а не французом. Также ученый не слишком хорошо владел французским языком и не публиковал на нем свои открытия. После длительных политических разбирательств на конференции в Париже было объявлено, что официальным названием для единицы силы невидимого поля будет вольт, выбранный в честь Алессандро Вольты, который имел публикации на французском, а также оказывал всемерную поддержку Наполеону. Вольта был первым изобретателем батарейки постоянного тока, но никогда до конца не понимал механизма ее работы. В итоге потенциал электрической силы измеряется в вольтах, а не в фарадах. Если указано, что электрический аппарат работает при напряжении в 120 вольт, это означает, что для нормальной эксплуатации необходимо получать 120 джоулей энергии на каждый кулон циркулирующего электрического заряда.
Джеймс Клерк Максвелл использовал для построения своей великой теории электромагнетизма, являющейся обобщением всех электрических и магнетических явлений, три основных элемента: — эксперимент Эрстеда (1820), сделавший очевидным существование магнетического эффекта, создаваемого движущимися зарядами; — открытия Фарадея (1831), доказавшие, что магнитные поля при изменении со временем создают движение электрических зарядов, в проводниках (индукцию); — описание Шарлем Кулоном (1785) за полвека до этого в виде закона способа взаимодействия электрических зарядов: величина каждой отдельной электрической силы прямо пропорциональна произведению величин зарядов и обратно пропорциональна квадрату расстояния между ними. Это обобщение позволило Максвеллу описать электромагнетические явления в виде четырех уравнений, которые называются уравнениями Максвелла. Первое представляет электрическое поле в зависимости от зарядов в состоянии покоя; второе переводит в математическую форму закон о том, что невозможно разделить полюса магнита; третье устанавливает, что электрические токи — это не единственный источник магнитного поля (эксперимент Эрстеда), также им являются электрические поля при изменении со временем; в четвертом обобщенно представлен вклад Фарадея в электромагнетизм.
Теоретические отголоски открытий Фарадея достигли ученых следующих поколений, таких как Максвелл и Эйнштейн. Они приняли эстафету из рук сандеманианца, чтобы сформулировать теории, с большей точностью описывающие реальный мир. Фарадей же продолжал исследовательские работы, направление которых переместилось на свет и его взаимодействие с электричеством и магнетизмом.Фарадей стал почетным прихожанином сандеманианской церкви, а в Бирмингеме открылось первое производство динамо-машин. С 1833 года ученый начал проводить электрохимические опыты, которые напрямую могли связать материю с электричеством. Чуть позже к этой связи добавился свет, так как он является не чем иным, как волной. С другой стороны, Герц открыл волновые свойства электромагнетизма. Физики XIX века, стоявшие на механистических позициях, считали, что так же как волны распространяются по воде, электромагнитные волны должны распространяться через некую среду, эфир. В электромагнитной волне распространение происходит за счет изменений электрического и магнитного полей. Герц в 1888 году опубликовал результаты своих исследований, сделав вывод, что свет и электромагнитные волны относятся к одному явлению. Так называемый электролиз, или расщепление вещества с помощью электрического тока, также позволил Фарадею утверждать, что электричество состоит из материальных заряженных частиц. Джордж Стони (1826–1911) назвал эти частицы электронами, но окончательное открытие электронов было сделано Уильямом Томсоном только в 1897 году. Благодаря этим открытиям и атомной модели Резерфорда сегодня мы знаем, что электроны составляют оболочку атома и соединены с ядром электрическими силами, более слабыми, чем остальные силы притяжения частиц в ядре. Таким образом, достаточно просто разорвать эти связи и отделить электроны.
До того как Фарадей начал свои исследования, считалось, что бывают разные виды электричества, в зависимости от источника. В начале XIX века думали, что существуют два вида электричества, изначально названных «стеклянное» и «смоляное», то есть положительное и отрицательное соответственно. Эта концепция, введенная Шарлем Франсуа де Систерне Дюфе, позволяла разделять все тела с точки зрения электричества: те, которые при натирании ведут себя как стекло, то есть электрически положительные, и те, которые при натирании ведут себя как смола, — электрически отрицательные (положительные и отрицательные — термины, введенные Бенджамином Франклином). Химические реакции можно было объяснять с позиции электрического притяжения и отталкивания. Таким образом, полюса контура притягивали на расстоянии компоненты молекулы, в конце концов разрушая ее.
Необходимость электрического разряда Майкл Фарадей экспериментально доказал, что самой по себе близости двух электрических полюсов недостаточно для химической реакции: нужен электрический разряд. Эксперимент состоял в том, чтобы поместить бумагу, смоченную раствором йодистого калия, между двумя заряженными электродами. При высвобождении йода бумага окрашивалась в характерный фиолетовый цвет, и таким образом становилось очевидно, что произошла химическая реакция. Тогда ученый смог наблюдать, что близости электродов недостаточно. Чтобы йод высвободился, а бумага окрасилась, нужен был электрический разряд. Для интерпретации данного явления Фарадей предложил, чтобы электрический ток вызывал помехи в химическом растворе, — это приводило к высвобождению йода.
С помощью советов Уильяма Уэвелла (1794–1866), специалиста по классическим языкам и исследователя Тринити-колледжа Кембриджского университета, Фарадей придумал множество неологизмов для обозначения явлений и понятий в своих теориях и изобретениях. Для того чтобы новый термин был как можно более точным, Фарадей описывал Уэвеллу понятие или ситуацию со своим характерным умением использовать прозу там, где другие прибегали к математическим уравнениям, а Уэвелл, который, как считается, ввел термин «ученый» (заменяющий слово «натурфилософ»), предлагал свой вариант неологизма. Электрохимия Особенно интересны термины, введенные для понятий, связанных с электрохимией. Если в своих предыдущих исследованиях Фарадей был пионером и ему требовались абсолютно новые термины, то в области электрохимии уже существовал некоторый понятийный аппарат. Однако Фарадей считал, что старые термины не соответствуют тому, что обозначают: он был уверен в неотложной необходимости ввести новые термины для описания знакомых понятий, чтобы не ограничивать процесс осмысления старыми рамками. Например, для терминов «анод» и «катод» Фарадей представил Уэвеллу образ тока, перемещающегося в направлении восток — запад. Этот образ тесно связывался с земным магнетизмом и линиями широты. Уэвелл предложил два варианта: эйсод (путь входа) и эксод (путь исхода), или анод (путь с востока) и катод (путь на запад). Фарадей в конце концов выбрал второй вариант, так как он лучше описывал то, что ему хотелось выразить. Также совместно они придумали термин «электролиз», то есть разложение молекул электрическим током. Им принадлежит термин «ион» (идущий) — заряженная частица, движущаяся в растворе. В свою очередь, ионы, движущиеся к аноду, стали анионами, а те, что перемещаются в направлении катода, — катионами. Уэвелл придумал и много других терминов, связанных с наукой. Одно из таких обозначений не имеет эквивалента в русском языке — это все чаще произносимый в последнее время термин consilience, его ввел в моду Эдвард О. Уилсон в книге, озаглавленной «Consilience. Единица знания», и он означает определенный подход к обобщенному изучению науки и гуманитарных дисциплин, выведение общего из разных классов знания.
Электролиз воды — это разложение воды (H2O) на газы — кислород (O2) и водород (H2) — с помощью пропускания электрического тока через воду. Этот процесс позволяет подтвердить соотношение, в котором находятся эти два газа: 2 объема водорода на 1 объем кислорода. Отрицательно заряженный катод собирает катионы водорода для формирования газа водорода. Положительно заряженный анод направляет электроны к аноду для замыкания цепи. Чистая вода не проводит электричество. Для осуществления реакции в воду добавляется несколько капель серной кислоты (Н2SO4), электроды должны быть из платины, используется постоянный ток. в результате мы получаем вдвое больший объем H2 (на катоде) по сравнению с O2 (на аноде). Более детально рассматривая процесс, мы можем наблюдать, что при погружении двух электродов в кювету с водным раствором (вода и несколько капель серной кислоты) в растворе будут находиться ионы водорода (Н+) и сульфата (SO4-). Если затем подключить генератор электрического тока, некоторые молекулы воды будут распадаться на H+ и ОН-. В результате ион OH- будет образовывать воду и молекулы газа кислорода, осаждающиеся на аноде в виде пузырьков. При этом ион SO4- вернется в раствор и останется в состоянии иона. В то же время ионы H+ от кислоты и воды уступят свои заряды и образуют молекулы водорода, осаждающиеся в виде пузырьков на катоде.
Догадки? Я ими не занимаюсь. Я лишь опираюсь на факты.Майкл Фарадей, ответ на вопрос о жизни после смерти
Чем больше величина диэлектрического коэффициента, или диэлектрической константы, обозначаемой как К, тем выше уровень электропроводимости материала. Например, константа воздуха — 1,00054, вакуума — 1,0. Другие значения К для разных материалов следующие. — Стекло: 5–10. — Нейлон: 3,5. — Полиэтилен: 2,3. — Хлорид натрия: 6,1. — Дерево: 2,5–8,0. — Этиловый спирт (0ºC): 28,4. — Дистиллированная вода (20ºC): 80,1. Если электрическое поле диэлектрика становится очень интенсивным, электроны покидают молекулы и материал превращается в проводник. Максимальное электрическое поле, которое диэлектрик может выдержать до момента разрушения, называется электрической прочностью. Вот некоторые примеры диэлектрических материалов: стекло, резина, воск, бумага, сухое дерево или фарфор.
«По словам подлинно светского человека Талейрана, назначение языка — скрывать мысли. Но в настоящий момент, когда я чувствую, что неспособен больше вести длительных разговоров, я должен заявить, и это действительно будет означать без каких-либо ошибок, недопонимания, двойственного или двойного смысла, отговорки или упущения, что я не нахожу подходящих условий, ибо мой ум слаб и я не могу работать».Чтобы побороть это физическое и умственное состояние, в 1835 году Фарадей позволил себе отдохнуть несколько месяцев в Швейцарии, но и это не помогло, и в 1840 году он начал терять сознание от переутомления. И вновь ученый решился на еще одну, более длительную, поездку в Швейцарию вместе с женой и братом Робертом. В тот период Фарадей совершал дальние прогулки, по 45–60 км в день. Впервые он был лишен каждодневного исследовательского труда. Однако, в отличие от Ньютона, который после кризиса так и не вернулся к решению интеллектуальных задач, Фарадей в 1844 году вновь принялся за исследовательскую деятельность, в этот раз связанную со сжижением газов.
После того как Фарадей восстановился после физического и умственного переутомления, у него состоялась встреча, которая, возможно, при других обстоятельствах произвела бы революцию в зарождавшихся тогда информационных технологиях. Это была встреча с Адой Байрон, дочерью лорда Байрона. Фарадей предстал перед ней в 1844 году со словами: «Я принадлежу к маленькой и презираемой секте христиан, известных, если о нас кому-то известно, как сандеманианцы». Встреча с графиней Лавлейс является одним из таких моментов истории, когда невольно возникает вопрос: а что было бы, если? Дочь лорда Байрона уже работала с Чарльзом Бэббиджем и его аналитической машиной, создавая для нее первые компьютерные алгоритмы — набор четких инструкций для выполнения какой-либо операции. Но технические возможности той эпохи не позволяли довести до конца теоретические идеи этих двух незаурядных умов. Поэтому Ада Байрон, очарованная открытиями Фарадея в области электричества, вероятно, рассчитывала, что эти открытия помогут и ее собственным исследованиям, и попросила Фарадея взять ее в ученицы.
Искушение Фарадей, верный своей религии, отказался, хотя был очарован этой красивой и умной женщиной, которую сегодня считают первым программистом в истории: он подумал, что таким образом может поставить под удар собственный брак. Несмотря на это переписка между исследователями продолжалась в течение нескольких лет, вплоть до преждевременной кончины Ады Байрон в 1852 году.
Co времен Ньютона существовали две интерпретации природы света. Согласно первой, свет — это поток частиц; именно эту корпускулярную теорию защищал Ньютон. Вторая интерпретация утверждает, что свет — это волна; за ней стоял Христиан Гюйгенс (1629–1695). В конце концов, эксперименты Юнга и Френеля, а также других исследователей установили в начале XIX века волновой характер света. Следующим концептуальным шагом стало доказательство того, что свет является электромагнитной волной. Сам Фарадей доказал возможность взаимодействия света с электрическими и магнитными явлениями, указав на то, что статическое магнитное поле может изменять скорость распространения света на определенных материалах (знаменитый эффект Фарадея). Формулировка данного эффекта позволила Фарадею утверждать, что свет является электромагнитной волной. Это утверждение с одновременным отрицанием, по его мнению, устаревшей идеи об эфире — теории, согласно которой для перенесения световых волн требуется специальная среда флюида, эфир, — было опубликовано в 1846 году в знаменитых Вечерних лекциях по пятницам. Теория Максвелла Максвелл собрал данные, полученные Фарадеем, и сформулировал полную математическую теорию, ставшую основой современной оптики. Эта теория представлена в серии из четырех докладов, озаглавленной «О физических силовых линиях» (On Physical Lines of Force), где мы можем прочесть: «Мы едва ли можем отказаться от вывода, что свет состоит из поперечных колебаний той же самой среды, которая является причиной электрических и магнитных явлений». Максвелл также предсказал возможность существования электромагнитных волн с длиной волны, превышающей видимый свет, которые сегодня мы называем радиоволнами.
«Если квадратный брусок вещества толщиной полдюйма и шириной два дюйма подвесить между двумя полюсами мощного электромагнита в форме подковы, при включении электромагнита брусок поворачивался и останавливался, но не вдоль линии между полюсами, а экваториально или перпендикулярно силовым линиям».Если тело из парамагнитного материала повернулось бы вдоль силовых линий, то стекло поворачивалось перпендикулярно. Фарадей открыл диамагнетизм. Также он поставил эксперименты, в которых луч поляризованного света линейно распространялся через стекло. При воздействии на стекло магнитным полем плоскость поляризации света вращалась. Сегодня это явление известно как эффект Фарадея. Возвращаясь к диамагнетизму, надо сказать, что Фарадей открыл существование материалов, которые отталкивались магнитом, то есть были противоположностью ферромагнетиков, которые сильно магнитом притягивались. Этот эффект не был чем-то новым, его уже обнаруживали другие ученые, но никому из них он не казался важным. Кроме того, эффект был довольно слабым и трудно поддавался измерениям. Продолжая эту линию исследования, необходимо было проверить и другие вещества. Так Фарадей открыл, что в зависимости от вещества бруски поворачивались по направлению магнитных силовых линий (их он назвал парамагнетики) или перпендикулярно (диамагнетики). То есть парамагнетики, помещенные во внешнее магнитное поле, притягивались в зону, где поле было наиболее сильным. С диамагнетиками наблюдался противоположный эффект — они притягивались в зону с более слабым полем. Таким образом, мы можем дать следующее определение парамагнетизму: эффект слабого магнитного притяжения, при котором материалы стремятся развернуться соответственно силовым линиям. Такими материалами являются хром, платина или алюминий. К веществам-диамагнетикам относятся медь, висмут, фосфор, бумага, сургуч, коровье молоко, яблоки, хлеб. Человеческое существо, по всей видимости, тоже должно относится к диамагнетикам. Фарадей сообщил в Королевском обществе 18 декабря 1845 года:
«[…] если бы человека можно было аккуратно подвесить, как это делал Дюфе, и поместить в магнитное поле, он бы повернулся в стороны экватора, так как все вещества, из которых он состоит, включая кровь, являются диамагнетиками».Фарадей подчеркивает, что между диамагнетиками существуют различия:
«Доскональное исследование показало, что даже материалы-диамагнетики, отличные от других тел, так как еще нагретые они неактивны в отношении обычных магнитов или при других опытах, не являются абсолютными диамагнетиками, поскольку удерживают часть магнитного потенциала вне зависимости от температуры».После этого водопада открытий Фарадей сообщил Королевскому обществу, что его работа в области диамагнетизма завершена. Это произошло 7 марта 1850 года.
В зависимости от ситуации материалы, помещенные в магнитное поле, могут разделяться на следующие виды. — Ферромагнетики: легко намагничиваются даже небольшим магнитным полем. Кроме того, они стремятся оставаться намагниченными после их помещения во внешнее магнитное поле. Линии магнитного потока проходят через ферромагнетики с большей легкостью, чем через пустоту. Все эти материалы имеют критическую температуру, называемую температура Кюри, выше которой ферромагнетик теряет свои свойства в результате термического возбуждения и превращается в парамагнетик. Например, температура Кюри для железа равна примерно 1043 К. — Парамагнетики: в отсутствие внешнего магнитного поля имеют случайный порядок магнитных моментов. Однако под действием внешнего магнитного поля магнитные моменты парамагнетиков стремятся повернуться параллельно магнитному полю. Если устранить действие внешнего магнитного поля, парамагнетики не сохраняют магнитных свойств. — Диамагнетики: очень слабо намагничиваются, при индуцированном магнитном моменте поворачиваются в направлении, противоположном магнитному полю. Если ферромагнетики притягиваются магнитами, то диамагнетики отталкиваются ими. В действительности все материалы имеют свойства диамагнетиков, но это может быть неявно выражено при слабом притяжении к магниту (парамагнетики) и при сильном притяжении к магниту (ферромагнетики).
Феноменологическая теория, разработанная французским математиком Симеоном Дени Пуассоном (1781–1840) и его немецким коллегой Карлом Фридрихом Гауссом (1777–1855), позволяет рассчитать эффект любого числа произвольно расположенных статических электрических зарядов. Две противоположно заряженные частицы притягиваются, и у них обнаруживается свойство ускоряться друг к другу, их скорость можно определить при учете сопротивления среды: если сопротивление среды присутствует, они могут двигаться с постоянной скоростью, , если сопротивление отсутствует, они двигаются с постоянным ускорением. После того как Фарадей установил, что электрические поля воздействуют силами на заряженные частицы, из-за того, что они обладают зарядом и вне зависимости от их скорости, а магнитные поля воздействуют силами на движущиеся заряженные частицы, благодаря уравнениям Максвелла, которые появились позднее, стало возможным определить поля на основе знаний о зарядах и токах.
«Теперь мы уже готовы к рассмотрению теории индуцированного магнетизма с той точки зрения, которой, как я полагаю, придерживался Фарадей. Когда магнитная сила действует на произвольную среду, магнитную, диамагнитную или нейтральную, внутри нее возникает явление, называемое магнитной индукцией, которая представляет собой направленную величину, имеющую природу потока, удовлетворяющую тем же условиям непрерывности, что и электрический ток и другие потоки».Это цитата из книги Джеймса Клерка Максвелла «Трактат об электричестве и магнетизме». Несомненно, автор хотел особо подчеркнуть роль Фарадея в изучении электромагнетизма. С другой стороны, в 1850 году немецкий физик Вильгельм Эдуард Вебер, в честь которого названа единица измерения магнитного потока в международной системе (вебер), предложил идею о том, что молекулы ферромагнетиков представляют собой маленькие магниты. При воздействии на них магнитным полем молекулы поворачиваются в одном направлении. Так ферромагнетик превращается в магнит. Однако эта идея противоречила постулатам феноменологической теории Пуассона, которая использовалась до сих пор для расчета эффекта от неопределенного количества произвольно расположенных статических электрических зарядов. Как и прежде, находки Фарадея стали основой для теоретической разработки в рамках новых дисциплин, появившихся позднее. Если различия между диамагнетиками и парамагнетиками были экспериментально выведены британским физиком Джеймсом Альфредом Эвингом (1855–1935), характеристики ферромагнетиков не были глубоко проанализированы до тех пор, пока Поль Дирак и Вернер Гейзенберг (1901–1976) не применили для этого основы развивающейся квантовой механики в 1929 году. Теория существования электронов подразумевалась в работах Фарадея и Максвелла, но окончательно была сформулирована нидерландским физиком Хендриком Антоном Лоренцем (1853–1928) и использована в первую очередь для оптических явлений. В 1900 году немецкий физик Макс Планк (1858–1947) ввел термин квант и открыл универсальную постоянную, названную постоянной Планка и использованную для расчета энергии фотона. В 1905 году Эйнштейн высказал идею, что свет распространяется как частица, фотон. Де Бройль в 1923 году указал, что квантовая механика придает частицам волновые свойства, а излучению, электромагнитным волнам — свойства частиц. Наконец, Гейзенберг и Шрёдингер соединили макроскопические явления со свойствами атома и молекул, и стал понятен феномен ферромагнетизма: в любом ферромагнетике имеются элементарные носители магнитного момента, отвечающие за макроскопические магнитные эффекты и спонтанную намагниченность.
«В течение долгого времени я был твердо убежден в том, что силы природы взаимозависимы — из-за их единого происхождения или из-за того, что они являются проявлением одной фундаментальной силы. Эта убежденность часто заставляла меня думать о возможности установить при помощи экспериментов связь, объединяющую гравитацию и электричество. Таким образом, гравитация оказалась бы включенной в группу, и образовалась бы цепочка, объединяющая магнетизм, химические силы, теплоту и другие проявления силы, с помощью взаимных соотношений».В 1851 году ученый начал рассматривать физическое существование линий силы, догадки о которых он опубликовал впервые в 1831 году. Тогда в отчете он развивал свою концепцию на основе эксперимента, при котором железные опилки, рассыпанные на листе бумаги, расположенном на намагниченном бруске, начинали образовывать кривые, соединяющие полюса магнита. Лекция «О связи золота (и других материалов) со светом», которую Фарадей прочитал в 1857 году, вдохновила ирландского физика Джона Тиндаля, который через два года после кончины Фарадея описал так называемый эффект Тиндаля, объясняющий голубой цвет неба. Скоро после этой лекции Фарадей по причине преклонного возраста ушел с поста директора Королевского института, который занимал долгие 36 лет. Впервые в Англии человек, происходящий из низших слоев общества, занимал такой ответственный пост, до сих пор достававшийся людям с хорошим происхождением, для которых научный труд не был способом заработка.
Эффект Тиндаля проявляется, когда пучок света проходит через среду, содержащую мелкие взвешенные частицы, рассеивающие свет. Свет без рассеивания был бы виден только наблюдателю, находящемуся перед источником света. При столкновении с частицами свет отклоняется в разных направлениях, достигая наблюдателя, находящегося на некотором расстоянии от источника, и становясь видимым. Мы можем наблюдать эффект Тиндаля, когда, например, зажигаем фары машины в тумане или когда луч света попадает в комнату с большим количеством пыли, висящей в воздухе. Тиндаль, как и Фарадей, был лектором Королевского института и великим экспериментатором. А в 1859 году он открыл парниковый эффект, воссоздав в лабораторных условиях атмосферу Земли для точного расчета того, сколько солнечной энергии достигает нашей планеты и сколько ее излучается в пространство.
Я принимаю их как почетные назначения, отказ от которых подразумевает оскорбление другой стороне.Майкл Фарадей о полученных наградах и должностях
«Я благодарен, как мне кажется, потому что после того, как мои способности ослабели и многие вещи в жизни стали неинтересны, мне остается надежда, которая превращает созерцание смерти в облегчение, смерть не страшит меня. Этот мир является даром Божьим, и так как Он дает его нам, чего же мы должны бояться? Его невиданный дар, его возлюбленный сын — это основа нашей надежды […]. Я счастлив и доволен».Королева Виктория намеревалась организовать погребение Майкла Фарадея рядом с Исааком Ньютоном и другими великими деятелями в Вестминстерском аббатстве, но вновь дали о себе знать религиозные воззрения английского ученого, который оставил следующие распоряжения: «Скромные похороны, на которых должны присутствовать только мои родственники, самый простой надгробный памятник в самом обычном месте земли». Рядом с могилой Исаака Ньютона в Вестминстерском аббатстве есть памятная табличка в честь Фарадея. Но его, как твердого в своей вере сандеманианца, похоронили согласно его пожеланию на сандеманианском участке кладбища Хайгейт в Лондоне.
В начале лекции и с помощью серии хитроумных приемов, незаметных аудитории, нужно держать интерес, пока этого требует тема.Майкл Фарадей о том, как оратор должен заинтересовать публику
«Стол лектора не должен быть загроможден аппаратами: лучше когда эксперименты проводятся по ходу лекции […]. Качество, которое выделяет хорошего лектора, хоть и не является самым важным, — красноречие […]. Лектор должен быть спокоен и уверен, он не должен выглядеть взволнованным, испуганным, невнимательным, чрезвычайно сконцентрированным на рассматривании и описании своей темы. Его жесты не должны быть поспешными и резкими, а медленными, простыми и естественными, состоящими в основном в перемене положения тела для того, чтобы избежать впечатления зажатости или монотонности, неизбежной в противном случае. Поведение лектора должно подчеркивать уважение к аудитории, лектор никогда не должен забывать о присутствии слушателей. Никакие происшествия не должны менять его внешнего вида или поведения, за исключением ситуаций, которые мешают слушателям. Никогда по возможности нельзя поворачиваться к аудитории спиной; если все-таки приходится это делать, необходимо приложить все усилия, чтобы публика думала, что главная цель лектора состоит в ее обучении и развлечении».Фарадей также настаивал, что лектор всегда должен составлять лекции письменно, но никогда не должен читать их, чтобы избежать монотонности. Он полагал, что в течение часа лекции можно изложить все свои идеи, и вспоминал некоторых излишне самоуверенных лекторов, которые теряли счет времени в длинных рассуждениях, выставляя напоказ свои огромные знания. При всем этом Фарадей осознавал, что существует тонкая грань между слишком академичной лекцией и слишком научно-популярной, и требуется мастерство эквилибриста, чтобы не оказаться по ту или другую сторону этой грани: «Слишком научно-популярная лекция не может научить, но лекция, которая слишком многому учит, не может быть научно-популярной». Фарадею удалось достигнуть золотой середины и вернуть популярность Королевскому институту, который и сегодня развивается, сохраняя это направление: проводит занятия по математике и технологии, реализует проекты внеклассной деятельности, создает видеофильмы. Среди европейских ученых, участвовавших в лекциях Королевского института в течение XIX века, можно назвать автора периодической системы элементов Дмитрия Менделеева (1834–1907), специалиста по органической химии Жана-Батиста Андре Дюма (1800–1884), личного друга Фарадея, автора книги «Историческое восхваление Майкла Фарадея» (Èloge historique de Michael Faraday, 1868) и знаменитого итальянского химика Станислао Канниццаро (1826–1910).
Лекции Майкла Фарадея стали источником вдохновения для многих ученых и обычных людей. Один из необыкновенных случаев — история английского химика Уильяма Генри Перкина (1838–1907). В 1856 году он случайно смешал анилин с дихроматом калия — данная смесь, на первый взгляд, ничего не стоила. Однако Перкин внимательно посмотрел на пурпурную искорку смеси, добавил спирт и растворил им смесь, и получилось вещество пурпурного цвета, которое прекрасно окрашивало ткань. Перкин в 18-летнем возрасте оставил учебу и запатентовал свой продукт. Использовав все сбережения семьи, он создал красильную фабрику и начал производство своего анилинового пурпурного. Во Франции новый краситель стал массово использоваться и получил название «мальва». Этот период в истории многие исследователи называют десятилетием мальвы, настолько популярным стал цвет. Было открыто множество предприятий по производству синтетических красок, стимулировавших параллельно развитие органической химии. Получив известность и разбогатев, Перкин прочел лекцию о красителях в Лондонском химическом обществе. В аудитории присутствовал и 70-летний Майкл Фарадей.
«Как Берцелиус, Фарадей был способным химиком-аналитиком; как Гей-Люссак и Дальтон, получил признание научного сообщества за работу с газами; как Эрстед и Ампер, стал создателем новой эпохи в изучении электромагнетизма; как Френель и Янг, внес фундаментальный вклад в теорию света; как Гемфри Дэви, был основателем электрохимии. Однако, в отличие от всех перечисленных личностей, он один одновременно работал во всех этих сферах».Фарадей разработал полную описательную теорию электричества, открыв электромагнитную индукцию, позволившую создать первый трансформатор и первую динамо-машину. Более современные изобретения, такие как телефон, предусматривают непосредственное применение электромагнитной индукции. Радиотелефония, в свою очередь, происходит от осмысления электромагнитной теории Максвелла. Исследование Фарадеем электролиза заложило основы, на которых позже было выстроено здание электрохимической промышленности. Открытие бензола стало истоком для становления промышленности по производству синтетических красителей. Наконец, его изучение взаимодействия света и магнетизма легло в основу исследований, из которых позднее выросли квантовая механика и теория относительности Альберта Эйнштейна. Идеи, привнесенные в науку Майклом Фарадеем, словно гигантские щупальца, тянулись ко всему новому и загадочному. Ученый никогда не ограничивал себя каким-то одним вопросом и занимался всеми загадками, попадавшимися ему на пути, каждодневно доказывая этим свою веру в Бога. Множество тайн, осмысленных Фарадеем, можно было бы объединить в одну общую тайну. Он на два века обогнал современных физиков, ставящих цель объединить все силы Вселенной.
Фарад (Ф) является единицей измерения электрической емкости в международной системе единиц (СИ) — в честь открытий, совершенных Майклом Фарадеем в области электромагнетизма. Электрическая емкость — свойство тел накапливать электрический заряд при определенной разности потенциалов, а также количество потенциальной электрической энергии, накопленной для заданной разности потенциалов. Типичным устройством для такого накопления энергии считается конденсатор. Таким образом, один фарад — это емкость конденсатора, между пластинами которого имеется разность потенциалов в 1 вольт (В), заряженного количеством электричества (электрическим зарядом) в один кулон (Кл). Такая емкость конденсатора, выраженная в фарадах, огромна, поэтому, как правило, используются кратные единицы: микрофарад (мФ) и пикофарад (пФ). Например, пикофарад — это одна миллионная миллионной фарада. Сфера диаметром 18 мм, расположенная в свободном пространстве, имела бы емкость в один пикофарад, при этом для того, чтобы проводящая сфера имела емкость в один фарад, ее диаметр должен быть 18 миллионов километров. Средняя емкость Так, в выражении С = Q/V, где С — емкость, измеряемая в фарадах, Q — накопленный электрический заряд в кулонах, V — разность потенциалов в вольтах, емкость всегда зависит от геометрии конденсатора, а также от диэлектрика, который помещается между двумя поверхностями конденсатора: чем больше электрическая константа материала диэлектрика, тем выше емкость. Нельзя пугать с фарадом старую величину электрического заряда, эквивалентную константе Фарадея и определяемую как количество электрического заряда на один моль (6,02214∙1023) электронов (равно 96 500 Кл).