РуЛиб - онлайн библиотека > Фейнман Ричард > Физика > 6. Электродинамика > страница 3

Читаем онлайн «6. Электродинамика» 3 cтраница

но сила, действующая на электроны, зависит от того, насколько быстро движется провод; быть мо­жет, если бы провод двигался достаточно медленно, этой элект­рической энергией можно было бы вообще пренебречь. Дейст­вительно, скорость, с какой высвобождается электрическая энер­гия, пропорциональна скорости провода, но все же полная выделенная энергия пропорциональна к тому же еще и времени, в течение которого проявлялась эта скорость. В итоге полная выделенная электрическая энергия пропорциональна произве­дению скорости на время, а это как раз и есть пройденное расстояние. Каждому пройденному в поле расстоянию отвечает заданное, и притом одно и то же, количество электрической работы.


«6. Электродинамика» картинка № 21

Возьмем кусок провода единичной длины, по которому течет ток I. Провод движется перпендикулярно самому себе и маг­нитному полю В со скоростью v;провод. Благодаря наличию тока сами электроны обладают скоростью дрейфа vдрейфвдоль провода. Компонента магнитной силы, действующей на каждый электрон в направлении дрейфа, равна qe vпровод В. Значит, скорость, с какой производится электрическая работа, равна Fvдрейф = (qevпроводВ)vдрейф. Если на единице длины провода имеется N проводящих электронов, то вся величина электрической работы, производимой в секунду, такова:


«6. Электродинамика» картинка № 22

Но Nqеvдрейф равно току I в проводе, так что


И поскольку ток поддерживается неизменным, то силы, действующие на электроны проводимости, не ускоряют их; электрическая энергия переходит не к электронам, а к тому источнику, который сохраняет силу тока постоянной.

Но заметьте, что сила, действующая на провод, равна IB; значит, IBvпровод — это механическая работа, выполняемая над проводом в единицу времени, dUмех/dt = IBvпровод. Отсюда мы заключаем, что механическая работа перемещения провода в точности равна электрической работе, производимой над источником тока, так что энергия петли остается постоянной!

Это не случайность. Это следствие закона, с которым мы уже знакомы. Полная сила, действующая на каждый из заря­дов в проводе, равна

«6. Электродинамика» картинка № 23


Скорость, с которой производится работа, равна


«6. Электродинамика» картинка № 24


(15.12)

Если электрического поля нет, то остается только второе слага­емое, а оно всегда равно нулю. Позже мы увидим, что изменение магнитных полей создает электрические поля, так что наши рас­суждения применимы лишь к проводам в постоянных магнит­ных полях.

Но тогда почему же принцип виртуальной работы дает правильный ответ? Потому, что пока мы не учитывали полную энергию Вселенной. Мы не включали в рассмотрение энергию тех токов, которые создают магнитное поле, с самого начала присутствующее в наших рассуждениях.

Но представим себе полную систему, наподобие изображен­ной на фиг. 15.3,а, где петля с током I вдвигается в магнитное поле B1 созданное током I2 в катушке. ТокI1, текущий по петле, тоже будет создавать какое-то магнитное поле В2 близ катушки. Если петля движется, то поле В2 изменяется. В следующей главе мы увидим, что изменяющееся магнитное поле создает поле Е, и это поле действительно начнет действовать на заряды в катушке. Эту энергию мы обязаны включить в наш сводный баланс энергий.

Мы, конечно, могли бы подождать говорить об этом новом вкладе в энергию до следующей главы, но уже сейчас можно оценить его, если применить соображения принципа относи­тельности.

«6. Электродинамика» картинка № 25


Фиг. 15.3. Вычисление энергии маленькой петли в магнитном поле.


«6. Электродинамика» картинка № 26

Приближаем петлю к неподвижной катушке и знаем, что электрическая энергия петли в точности равна и противо­положна по знаку произведенной механической работе. Иначе говоря,


Теперь предположим, что мы смотрим на происходящее с другой точки зрения: будем считать, что петля покоится, а катушка приближается к ней. Тогда катушка движется в поле, создан­ном петлей. Те же рассуждения приведут к выражению


«6. Электродинамика» картинка № 27


Механическая энергия в обоих случаях одна и та же — она определяется только силой, действующей между двумя конту­рами.

Сложение двух уравнений дает

«6. Электродинамика» картинка № 28


Полная энергия всей системы равна, конечно, сумме двух элект­рических энергий и взятой один раз механической энергии. В итоге выходит


«6. Электродинамика» картинка № 29


«6. Электродинамика» картинка № 30

Полная энергия всей системы — это на