РуЛиб - онлайн библиотека > Хоровиц Пауль > Радиоэлектроника, радиотехника, связь > Искусство схемотехники. Том 2 [Изд.4-е]

Читаем онлайн «Искусство схемотехники. Том 2 [Изд.4-е]»

Хоровиц Пауль, Хилл Уинфилд
«Искусство схемотехники» Том 2 (Главы 7–10) Издание 4-е переработанное и дополненное

THE ART OF ELECTRONICS

Second Edition

Paul Horowitz Harvard University

Winfield Hill Rowland Institute for Science, Cambridge, Massachusetts

CAMBRIDGE UNIVERSITY PRESS

Cambridge

New York Port Chester Melbourne Sydney


«Искусство схемотехники. Том 2 [Изд.4-е]» картинка № 1

Глава 7 ПРЕЦИЗИОННЫЕ СХЕМЫ И МАЛОШУМЯЩАЯ АППАРАТУРА

Перевод Б. Н. Бронина


В предыдущих главах мы рассмотрели многие аспекты проектирования аналоговых схем, включая свойства пассивных элементов и транзисторов, ПТ и ОУ, обратную связь, а также рассмотрели ряд применений этих устройств и методов схемотехники. Но в этих рассуждениях не ставился вопрос о лучшем из возможных вариантов, например о минимизации ошибок усилителя (нелинейность, дрейф и т. д.), или об усилении слабого сигнала с наименьшим искажением за счет «шума» усилителя. Эти вопросы во многих случаях составляют существо дела, и поэтому они являются важной частью искусства схемотехники. Поэтому в данной главе мы рассмотрим методы проектирования прецизионных схем и проблемы шумов усилителя. При первом чтении всю эту главу можно пропустить, за исключением разд. 7.11, в котором вводится понятие «шум усилителя». Для понимания следующих глав материал данной главы несуществен.

Разаработка прецизионной аппаратуры на операционных усилителях

При измерении и управлении часто нужны высокопрецизионные схемы. Схемы управления должны быть точными, устойчивыми относительно времени и температуры, а их поведение - предсказуемым. Так же и ценность измерительного прибора зависит от его точности и стабильности. Почти во всех областях электроники существует желание сделать все более точно — можно назвать это стремлением к совершенству. Если вам и не нужна такая высочайшая точность, приятно иметь точные приборы, чтобы до конца понимать, что происходит.


7.01. Соотношение точности и динамического диапазона
Понятия точность и динамический диапазон легко спутать, поскольку иногда одна и та же аппаратура используется для достижения и того, и другого. Может быть, разницу можно лучше всего пояснить на ряде примеров: у 5-разрядного цифрового многошкального прибора — прецизионная точность; измерения напряжения им делаются с точностью 0,01 % и выше. Такое устройство также имеет широкий динамический диапазон — от миливольт до вольт на одной и той же шкале. Точный десятичный усилитель (например, с коэффициентом усиления, выбираемым из ряда значения 1, 10, 100) и прецизионный опорный источник напряжения могут иметь достаточную точность, но не обязательно широкий динамический диапазон. Примером устройства с широким динамическим диапазоном, но скромной точностью служит шестидекадный логарифмический усилитель (ЛУ), построенный на тщательно подогнанных ОУ, но с применением элементов, имеющих точность всего лишь 5 %; даже при использовании более точных элементов ЛУ может иметь ограниченную точность за счет несоответствия при крайних значениях тока характеристик используемого для преобразования транзисторного перехода логарифмической зависимости. Другой пример устройства с широким динамическим диапазоном (диапазон входного тока более чем 10000:1) при весьма скромной точности 1 % — это кулонометр, описанный в разд. 9.26. Вначале он был спроектирован для определения суммарного заряда электрохимического элемента — величины, которую достаточно знать с точностью 5 %, но которая образуется в результате действия тока, изменяющегося в широком диапазоне. Общее свойство устройств с широким динамическим диапазоном это то, что входное смещение должно быть тщательно отрегулировано для обеспечения пропорциональности при уровне сигнала, близком к нулю. При проектировании прецизионной аппаратуры это также необходимо, но там для удержания суммарной погрешности в рамках так называемого бюджета погрешности требуются также прецизионные элементы, устойчивые генераторы опорных напряжений, и внимание ко всем возможным источникам погрешностей.


7.02. Бюджет погрешностей схемы
Несколько слов о бюджете погрешности. Начинающие разработчики часто попадают в ловушку, считая, что несколько стратегически правильно расположенных прецизионных элементов дадут устройство с прецизионными параметрами. В каких-то редких случаях, может быть, так и получится. Но даже схема, битком набитая резисторами 0,01 % и дорогостоящими ОУ, не оправдывает ваших ожиданий, если на каком-то участке схемы смещение выходного тока, умноженное на сопротивление источника, даст погрешность смещения напряжения, например 10 мВ. Подобного рода погрешности встречаются почти в любой схеме, и важно их выявить, хотя бы для того, чтобы найти место, где требуется устройство с лучшими параметрами или где нужно изменить